

WESTCARB Geologic CO₂ Sequestration Field Tests

John Henry Beyer, Ph.D.

WESTCARB Program Manager, Geophysicist Earth Sciences Division

Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley, CA 94720 510-486-7954, jhbeyer@lbl.gov

WESTCARB is one of seven DOE Regional Carbon Sequestration Partnerships

- U.S. Department of Energy program initiated in 2003 through the National Energy Technology Laboratory*
- Evaluating opportunities for geologic and terrestrial storage of CO₂ throughout the U.S. and Canada
- More than 350 participating organizations in the U.S. and Canada
- Focus on implementation issues

^{*} http://www.netl.doe.gov/technologies/carbon_seq/partnerships/partnerships.html

WESTCARB has diverse partners contributing knowledge and dollars for CO₂ geologic storage

- WESTCARB is the West Coast Regional Carbon Sequestration Partnership
- It includes more than 80 organizations:
 - Resource management and environmental protection agencies
 - National laboratories and research institutions
 - Oil, gas, and pipeline companies
 - Conservation nonprofits
 - Climate project standards organizations
 - Colleges and universities
 - Trade associations
 - Service firms and consultants
- Led by the California Energy Commission
- Funded by U.S. Department of Energy, the Energy Commission, and industry partners

WESTCARB addresses technical and policy issues about carbon storage in a phased, applied R&D program

- Identify regional CO2 sources and how much they emit
- Identify locations where captured CO2 can be stored
- Quantify the risks and determine the safety
- Develop and demonstrate methods to monitor CO2 in the ground
- Estimate the cost and time scale for geologic storage
- Work with regulatory agencies to develop new standards for injection and storage of CO2
- Inform the public about geologic storage of CO2
- Phase I Characterize regional CO2 storage opportunities (complete)
- Phase II Test promising geologic and terrestrial CO2 storage options at pilot scale (complete in Fall 2009)
- Phase III Pre commercial-scale geologic CO2 storage test (beginning in 2008)

WESTCARB region's major CO₂ point sources

 Oil Refineries Power Plants

45 40 35

30

10

Megatonnes CO₂

WESTCARB region has many deep saline formations – candidates for CO₂ storage

Source: DOE Carbon Sequestration Atlas of the United States and Canada

Deep Saline Formations

WESTCARB also created GIS layers for oil/gas fields and deep coal basins

Arizona Utilities CO₂ Storage Pilot

A UniSource Energy Company

- Arizona Public Service Company
- Salt River Project
- Tucson Electric Power
- Arizona Electric Power Cooperative
- National Rural Electric Cooperative Association
- Peabody Energy
- Electric Power Research Institute
- Lawrence Berkeley National Laboratory
- Lawrence Livermore National Laboratory
- California Energy Commission
- U.S. Department of Energy

Storage potential of Arizona geologic provinces

- Significant capacity in Colorado Plateau Province
- Limited capacity in Basin and Range Province
- Minor capacity in Central Highlands Province

Geologic section in Southern Colorado Plateau

Arizona Pilot Project Scientific Objectives

- **Evaluate CO₂ sequestration opportunities in the southern** Colorado Plateau
- Demonstrate safe storage of CO₂ in porous carbonate formations containing non-potable, saline water beneath thick, low permeability cap rock
- Determine injectivity and storage capacity of the reservoir
- Develop, calibrate, and validate multiphase flow models for CO₂ injection into saline formations typical of northeastern Arizona
- Show that surface and borehole geophysical techniques can image CO₂ in the subsurface and detect leaks
- Assess caprock integrity
- Assess potential environmental impacts surface leakage, groundwater

Arizona Pilot Project Test Plan

- Numerical simulation of CO₂ injection
- Drill and log a single well ~4,000 ft (1,200 m) deep near the APS Cholla Power Plant fly ash pond
- Ensure TDS of reservoir formation >10,000 mg/L
- Step-rate injection test to determine maximum injection pressure
- CO2 huff-puff test for residual saturation estimate
- Inject 2,000 tonnes of commercial-grade CO2
- Sample fluids with U-tube system; chemical analysis
- Pre- and post-CO2 injection monitoring
 - Reservoir Saturation Tool (RST) logs
 - Vertical seismic profile (VSP) surveys
 - Distributed Thermal Perturbation Sensor (DTPS) logs
- Vent CO₂ from well; analyze fluids with phasepartitioning tracers

TOUGH2 Simulation of CO₂ injection

High horizontal permeability Low vertical permeability Hysteretic effects included

Formation	Thickness	k_h (mD)	k_{v} (mD)
Upper Naco	76 m (250 ft)	10	1
Lower Naco	76 m (250 ft)	100	3
Upper Martin	21 m (69 ft)	100	3
Jerome	40 m (131 ft)	700	20

2,000 tonnes injected over 30 days (0.8 kg/s) into Jerome Member of Martin Formation

- Depth = 1,100 m (3,700 feet)
- P = 10.3 MPa (1500 psi) [hydrostatic]
- T = 54°C (129°F) [normal gradient]
- **Porosity = 10%**
- Residual saturation for drainage, $S_{gr} = 0\%$
- Residual saturation for imbibition, S_{qr} = 25%

TOUGH2 simulation of pressure during CO₂

injection

Pressure in reservoir formation at injection depth

High horizontal permeability

Formation	Thickness	k_h (mD)	k_v (mD)
Upper Naco	76 m (250 ft)	10	1
Lower Naco	76 m (250 ft)	100	3
Upper Martin	21 m (69 ft)	100	3
Jerome	40 m (131 ft)	700	20

2,000 tonnes injected over 15 days (1.6 kg/s) into Jerome Member of Martin Formation

- Depth = 1,100 m (3,700 feet)
- P = 10.4 MPa (1558 psi) [hydrostatic]
- T = 54°C (129°F) [normal gradient]
- Porosity = 10%
- Residual saturation for drainage, S_{ar} = 0%

U-Tube System – continuous water, CO₂, and tracer samples at reservoir pressure

U-tube and check, valve strapped to production tubing

Distributed Thermal Perturbation Sensor (DTPS) for tracking CO₂ migration in the subsurface

Thermal conductivity measurements during and after CO₂ injection monitor the distribution of CO₂ near the well

- The DTPS consists of a borehole-length electrical resistance heater and fiber optic distributed temperature sensor
- Constant heating is applied along the borehole, then is turned off. The temperature sensor measures the decay
- The low thermal conductivity of CO₂ versus water allows for estimates of CO₂ saturation
- The DTPS has been successfully tested at the CO2SINK project in Germany

Vertical Seismic Profile (VSP) Survey

- To be performed in time-lapse mode, pre- and post-CO2 injection
- Supercritical (liquid-like)
 CO₂ displaces some formation water and reduces seismic velocity

VSP detection of 1,600 tonnes of CO₂ at Frio Test Site in Texas

westcarb.org

Control reflection

Postinjection reflection

(T. Daley, LBNL, 2005)

California CO₂ Storage Pilot

Site Geologic Attributes:

- Multiple seals
- High permeability saline reservoir

Field Operations:

- **Drill two wells penetrating** reservoir
- Inject 2,000 tonnes of CO₂ into a saline formation
- Assess injectivity and storage capacity
- Monitor subsurface CO₂ movement
- Test for leakage

Representative cross-section

Monitoring the CO₂ plume

- Seismic imaging
 - Time lapse VSP
 - Time lapse crosswell
 - Controlled-Source **Active Seismic** Monitoring (CASSM)
 - Correlate seismic with fluid and tracer samples obtained with U-tube
- Time lapse Reservoir Saturation Tool (RST)* log
- * Schlumberger tool that measures thermal neutron absorption to infer water saturation, and C/O ratio with an induced gamma ray spectrometer.

Frio CO₂ Test Site, Texas

Regulatory Agencies & Permits

- Experience with permitting pilot projects
 - Injection permit: US EPA Underground Injection Control (UIC) Program – Class V, Experimental (New draft regulations for Class VI, CO2 wells)
 - Drilling permit in oil/gas field: CA Department of Oil, Gas and Geothermal Resources
 - Drilling permit in saline aquifer: County agency
 - NEPA: DOE Environmental Questionnaire
 - CEQA: Lead state or local agency; CEC approval

Agreements & Contracts

- Experience with contracting for pilot projects
 - Surface owner
 - Mineral rights owner
 - Mineral rights leaseholder
 - Pore space owner (surface owner in Wyoming)
 - Agreements among project partners
 - Contracts with subcontractors and suppliers
 - Adjacent mineral/pore space owners (subsurface trespass)
 - Adjacent surface owners for VSP source points

WESTCARB Phase III Objectives

- Conduct a commercial-scale Carbon Capture and Storage test injecting1 million tons of CO₂);nominal 10-year project
 - Access the best geologic target in California
 - Refine capacity estimates and "qualify" the target formations (Olcese and/or Vedder) for commercial application
- Co-locate project with advanced, commercial "sequestration friendly" oxy-combustion technology (Clean Energy Systems)
 - Technology development supported by DOE and CEC
 - Planned as first commercial-scale facility of its type in U.S.
- Demonstrate commercial-scale injection site characterization, operations, maintenance, and monitoring (Schlumberger)
- Conduct research to improve technologies for reservoir modeling/simulation and engineering, risk assessment, and measurement/monitoring (LBNL, LLNL, Stanford)
- Establish in the public mind—via direct proof—that emission-free fossil power is possible and geologic sequestration is safe

Project is representative of major California sequestration/EOR potential - provides underpinnings for commercialization

(J. Johnson, LLNL)

WESTCARB Phase III site co-located with CES zero-emissions power plant

- CES will build a 49 MW power plant near Bakersfield, CA
- Plant will provide ~250,000 tons of CO₂ per year for four years
- CO₂ injectivity test in 2009-10, full scale injection in 2010-11
- One injection well and one monitoring well
- Initial geologic modeling, reservoir simulation, and risk assessment under way

Clean Energy Systems' generation technology

Projected surface footprint of plume over time affects project planning

Risk assessment methods developed in Carbon Capture Project 2 being applied

Four compartments vulnerable to impacts:

ECA - Emission credits and atmosphere

HSE - Health, safety, and environment

USDW - Underground sources of drinking water

HMR - Hydrocarbon and mineral resources

Two conduits with potential for leakage:
Wells, Faults and Fractures
CO₂ Leakage Risk is probability that
negative impacts will occur to HMR, USDW,
HSE, or ECA due to CO₂ migration

Source: C. Oldenburg, LBNL

Monitoring the CO₂ plume

- Well logs
- Formation fluid sampling
- Active source thermal logging
- Surface monitoring near wells
- Microseismic monitoring
- Time-lapse 3D seismic

Time-lapse 3D seismic results at Statoil's Sleipner project, North Sea (Chadwick, 2004)

Research-stage monitoring methods will be explored

- PSInSAR (Permanent Scatterer Synthetic Aperture Radar Interferometry) COUld provide inexpensive picture of pressure distribution
- Novel deployment and analysis of surface seismic for plume boundary monitoring
- Possible application of electromagnetic methods
- Processing/joint inversion

Time lapse PSInSAR data showing surface displacement due to CO₂ injection at Gas Processing Plant, In Salah, Algeria

Source: J. Rutqvist, D. Vasco, LBNL

